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1. Phys. A. Math. Gen. 28 (1995) 589406 .  Prmted in the UK 

Symmetric function products and plethysms and the 
boson-fermion correspondence 

T H Baker 
Physics Department, University of Tasmania GPO Box ZZC, H o b a  Australia 7001 

Received 6 May 1994 

Absn'aci. We use the boson-fermion wrrespondence for S and Q functions to establish some 
interesdng properties concerning outer products and plethysms of S-functions (or Q-functions) 
by power sum symmetric functions. The techniques which are developed are also applied to 
computing the h e m e  Kostka-FouEes matrix (which is the transition mahix between Hall- 
Littlewood symmetric functions and S-functions) in some simple cases. 

1. Introduction 

The long-established boson-fermion correspondence [ l ]  has been of great importance in 
many areas of mathematical physics. It has proved indispensable in vertex operator 
realizations of &ne Lie algebras p-51, which in turn can be used in the study of hierarchies 
of nonlinear partial differential equations [6,7]. It has also proved useful in the theory 
of symmetric functions as it relates to these hierarchies. It has been used, for example, 
in the theory of the @)KP hierarchy of nonlinear partial differential equations [8,9] to 
prove that Schur (Q-)polynomials solve the hierarchy [1&l3], as well as investigating the 
Hirota form of the (B)W hierarchy [14]and its connection to the tensor product of two Fock 
representations of the Virasoro algebra. [15]. In addition it has proved helpful in proving 
S and Q-function identities [16-18], new determinant formulae for composite S and Q- 
functions 1191, as well as investigating various q-deformations of symmetric functions [ZO]. 

It is in the spirit of the latter works that we approach the present work. There, the 
boson-fermion correspondence (along with Wicks theorem) was used as an algebraic tool 
to translate calculations involving free fermions (whose algebra has a very simple structure) 
into results concerning S and Q-functions. Indeed, one can generalize the correspondence 
to Hall-Liulewood symmetric functions [ZI] although, in this case, the structure of the 
corresponding fermionic algebra is not nearly so nice as that of free fermions. Nevertheless, 
as was shown in Jing's article, it is still possible to derive some powerful results concerning 
symmetric functions. By using the different realizations of the Heisenberg algebra in terms 
of power sum symmetric functions and in terms of a bilinear expression involving free 
fermions (neutral free fermions) we are able to find a method for decomposing the power 
sums p i ( x )  in terms of S-functions (Q-functions). This enables one to calculate (albeit 
by brute force!) the characters x i  of the symmetric group S,, which provide the transition 
between power sums and symmetric function 
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Using the same method, we also develop a very mechanical formula for the well known 
decomposition of the product of a power sum and an S-function, in terms of other S- 
functions. This implicitly carries the same information as the Mumaghan-Nakayama 
recurrence relation for the characters of the symmetric group [221. 

We then turn our attention to computing plethysms [23,24] of the form sA(x) 8 p , ( x ) .  
That is, we find a procedure for decomposing s ~ ( x ' )  in terms of S-functions s F ( x ) ,  by 
relating the vertex operator realization of S-functions with argument x' to those with 
argument x .  This provides us with some exact results (particularly in the case r = 2) 
as well as providing an algorithm in the general case. We then turn our attention to Hall- 
Littlewood functions and in particular the inverse Kostka-Foulkes polynomials, which are 
the matrix elements of the transition matrix between Hall-Littlewood functions and S- 
functions. These polynomials have been calculated in terms of matrix elements of certain 
vertex operators [Zl], and there is indeed a direct combinatorial description of them 125,261. 
We use the techniques developed for the plethysm calculations to work out a method for 
calculating inverse Kostka-Foulkes polynomials, and derive a couple of explicit results. 

In section 2 we briefly review the classical boson-fermion correspondence, before 
utilizing it to reproduce some well known identities involving power sums and S-functions. 
Using the boson-fermion correspondence for Q-functions [IO], these identities are extended 
to that case in section 3. In section 4 we investigate the plethysms SA@) 8 p , (x )  = s ~ ( x ' ) .  
By manipulating the vertex operators representing the free fermionic currents, we are 
able to give a procedure for calculating this plethysm and write down some simple cases 
explicitly. Lastly, in section 5, we carry out similar manipulations to Hall-Littlewood vertex 
operators 1211 to find an algorithm for calculating the decomposition of the Hall-Littlewood 
function 4 ( x ;  t )  in terms of S-functions. We conclude with some remarks about extending 
the concept of plethysm to Hall-Littlewood functions, and look at a couple of examples. 
In the appendix we display some interesting relationships between elementary Q-functions, 
the functions h,,(x*), and the compound functions h,(x,  x ) .  

2. S-functions and the boson-fermion correspondence 

Let us summarize the boson-fermion correspondence for free fermions [SI which we shall be 
using extensively. The algebra A of free fermions is generated by +j, *,?, i 6 Z satisfying 
the anti-commutation relations 

( $ i ,  @ j l  = 0 = I*:, @Jl ( * i ,  @;I = & j .  (2.1) 

There is a Fock representation of this algebra with a vacuum 10) which satisfies 

@ilO) = 0 ( i  < 0) *?IO) = 0 (i 2 0) 

(OI*i = 0 (i 2 0) {Ol@.i* = 0 (i < 0). 
(2.2) 

Using this definition of the vacuum, we can compute the vacuum expectation value 
(a) = (O[alO) for any product of free fermions. In particular we have 

(*i*j) = O  (WJ) = 0 

(*i+T) = 
6ij i = j < O  6ij  i = j > O  

l o  otherwise I o  otherwise. 
(@,?@j) = 
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If we define normal ordering by : @,i@; := @i$: - (pi@:) then we have 

59 1 

*i 1G;* j 2 0  * 3 j  j -=O 

-$j&" j > O .  -@;@j j C O  
: p;*j := 

n E Z. (2.3) 

1 : := 

Let 

H, = : @&+" : 

[f&, Hml = n $+m.o. 

iEZ 
Then the operators H, generate the Heisenberg algebra 

(2.4) 
Suppose we have a set of Heisenberg generators [a,, : n E Z) satisfying (2.4). These 

have a realization on the space A(x)  of symmetric polynomials in the indeterminate 
( X I ,  xz, . . .) in terms of power sum symmetric functions pk(X) = C, x; as 

and a0 acts as a constant on A. Let us adjoin to the Heisenberg algebra an operator q 
satisfying 

[q ,  an] = 0 for n # 0 [q. a01 = i. 
Define vertex operators 

If the modes of these vertex operators are given by the expansion 

@ ( z )  = E h z "  rlr*(z) = E @;z-" 
ncz ncz 

then it is well known that the modes @n, @; satisfy the anti-commutation relations of the 
free fermion algebra (2.1). Moreover, under the association (2.5) every state olO), n E A 
in the fermionic Fock space can be identified with a symmetric function as follows: Define 
a grading (charge) on the elements of A by setting deg(*f) = 1, deg(*:) = -1, for all 
i E Z (this can be achieved by the grading operator ad(&) with HO defined in (2.3)). Thus 
an element @; . . . @; @j, . . . @is IO) will have charge i = s - r .  If we let 

i f1  < O  

then we have the isomorphism of states 

a10) C, (~le"")nlO). (2.7) 
In fact each of the charge subspaces A = @ A  will be isomorphic to the space A of 
symmetric functions in the variables x .  In particular there is the identification [SI for 
0 < i, c . . . < il, 0 < j ,  c . . c j ,  

(2.8) q , ~ ,  JI . . . f,; Jr . h, . . . @il I 0) = (-l)h+.,,b+f(l-1)/2 S A ( X )  
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where 

A = ( i l  + 1 - l , i z + 2 - l  ,.._, j s + s - l , r j r - l q ( r -  1)jr-l-jr-l ,..., 2h-jrl 1h-h-I ). 
(2.9) 

Note that for 1 = 0, we can write. this in Frobenius notation as 

( i i , i z , .  . . , i , l j l  - 1, j ,  - 1, .. . , j ,  - 1). 
i' 1 A = (  i2 ... 

j l - 1  j z - 1  ... j , -1  
The boson-fermion correspondence can be used to prove useful identities involving 

S-functions. For instance, we know that under the above 'isomorphism, the Heisenberg 
generators (2.3) are mapped onto the following operators on A. 

(2.10) 

while Ho ff 0. Thus, acting on the vacuum, we know that H-.IO) = p, (x) . l  = p n ( x ) ,  so 
that 

expressing the well known identity between power sums and one-hook S-functions. In a 
similar manner we can calculate ~ ( " . ~ ) ( x )  = p. (x)pm(x) ,  by working out H-,,H-,IO), and 
obtain 

~ ( k - l l n t m - k ) ( x )  
k = n t l  k=l 

In principle, one could expand the power sum p ~ ( x )  in t e r m  of S-functions by applying 
the operator H+ H-A, . . . to the Fock space vacuum. However, it would be easier to use 
the following result recursively. 

L " 1 .  If 
jl ... 

A =  ( 
j ,  - 1 ... j ,  - 1  

where jk > 1, ib > 0, then 

where 
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and 

The proof uses the isomorphism (2.8) and formulae such as 

p = l  

where denotes omission of the relevant object. Note that non-standard partitions w 9 ,  
v9 and uk will arise in the above expansion. But these are easily modified to standard 
partitions by noting that interchanging consecutive Frobenius labels introduces a minus sign 
in the S-function (so that, in particular if a partition has any two Frobenius labels equal, 
the corresponding S-function is zero). The above lemma was proved in 1271 in the form 

& 

where the sum is over all partitions p such that the skew diagram B = p - h is a border 
strip of length n. By this we mean that B is a connected skew diagram which contains 
no 2 x 2 blocks, the length of 6' is Ci 6,. and ht(6') is the one less than the number of 
rows 6' occupies. Hence to calculate p n  s i  one can use the algebraic result lemma 1, or the 
combinatorial result (2.11). 

We can slightly generalize the Heisenberg generators (2.3) and in the process, obtain 
some interesting identities involving elementary Hall-Littlewood functions and S-functions. 
Let 

(2.12) H"(t) = Et-"-' : +i*:+n : . 
ieZ 

Then these generators fulfill the commutation relations 

so that the usual relations are obtained when t = 1. For generic r these generators do not 
form a closed algebra, although the generators [Hn(l), &(-I) : n E Z} form an interesting 
2& graded algebra (although not a superalgebra). Also the set {Hn( - l )  : n even) form 
an ordinary Heisenberg algebra and the set [Hn(-l) : n odd] an algebra of symplectic 
bosons 1281. The elegant representation of Hn(l) H. in terms of power sums and 
their adjoints unfortunately does not generalize to the t # 1 case. In fact, if we have the 
generating function H ( w )  = E,, H-,w" then it follows that 

H ( w )  =: *(w)@*(rw) := Z(w,  w t )  

where 181 

That is 

(2.13) 
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where q,(x; t )  is an elementary Hall-Littlewood function (see section 5 )  and the differential 
operator j n ( x ;  r )  has the generating function 

These have the usual limits (2.10) as r -+ 1 .  Using (2.13) we see that 

H-,(r)lO) = - q,(x;  t )  = t P&; t )  
t 

n > 0 
1 - - f  

so that if we now use the definition (2.12). we have the well known result [27] 
n-l 

~ ( d x ;  -f) = C ( - t ) ' s ( , - ~ - ~ ( x )  (2.14) 
k=O 

where t )  denotes the Hall-Littlewood function (see section 5 for the definition). 
To see the action of H-,( t )H-,(r)  on the vacuum, we first need the result 

f-"--fl"+l where [n],,, = -. This is proved using the generating functions for q,, and 3". From 
this, one obtains the following two equivalent expressions for H+,( t )Km(r) l  0): 

n-I m-I 

t x ( - t P ( - r ) m - '  s(k .~ ln- t - l .m- l - I (x )  
k=O 1=0 

which is an unusual identity involving elementary Hall-Littlewood and S-functions. When 
t = 1 and r = -1 (or vice-versa), the left-hand side reduces to -pn(x)qm(x)/2 where 
q m ( x )  = kP(m)(x;  -1) is an elementary Q-function (see section 3), so we obtain the 
expansion of the product of a power sum and an elementruy Q-function in terms of one and 
two-hook S-functions. This result could also be deduced however, by expanding q,(x) in 
terms of S-functions by (2.14) and using lemma 1. 

3. Q-functions 

Elementary Q-functions q.(x) are defined in terms of the generating function 

For a two part partition (m, n) (strict or non-strict), let 
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Then Q(m,.,(x) = -Q(n,m,(x) and so if h = ( A I , .  . . , bp)  is a partition with distinct parts, 
one can define 

QiG) = Pf (Q(i,,i,l) 

where x = b if p is even, and x = (b.0) if p is odd. Here Pf(M) denotes the Pfaffian of 
the antisymmetric mah.ix M. There is likewise, an isomorphism between the Fock space 
generated by neutral free fermions, and Q-functions. The neutral free fermions cpi, i E 2 
are defined in terms of free fermions, by 

* j  t ( - - 1 ) j ! P j  

.Jz 6 = 

which satisfy the anti-commutation relations 

M i ,  ,$jl = (-lY&+f.o' 

There is a vacuum IO) defined by 4, IO) = 0 for i c 0. Let 

with normal ordering defined as above. That is 

M j  i f j c O  

'@+.  .- -9.4 i f j > O  I (1 - " 8i,o)q5ibo if j = 0. 

, I ,.- 

Then the generators {Hn : n E 22 + 1) generate the Heisenberg algebra 
n 

[H.! "I = 2 4 l t m . o .  

Again, if one lets 

1 

then there is an isomorphism q5j c) X j .  Moreover, there is an isomorphism of the states 
[I 1,191 

h . , . . . h e I O )  - 
In particular the state q5m@,,10) ++ )Q<,,,,(x). Under this isomorphism, the Heisenberg 
generators have the realization 

(eH'")qhh,hh, . . . 4 i n )  = z-"' Qio 
(eH(%,h2 . . . &~,ho) = 2- (Pi')/' Q l ( x )  

if p is even 

if p is odd, 1 
Like the S-function case, there is a relation between (odd) power sums and two-part Q- 
functions 
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which is proved in a similar manner, using (3.2) and (3 .3)  Note that it is only possible to 
express the odd power sums in terms of Q-functions, because the space spanned by the 
Q-functions is isomorphic to Q [ p l ,  p3, p r ,  . . . I .  Similarly we have 

n n 

~ ( ~ m t ~ . ~ z t ~ ) ( x )  = i C(-l)'Q(Zmtatz-j.j)(x) - f C(-l)jQ[~mtl+j,2n+l-j)(~) 
j = O  I= I 

Again, we can recursively obtain the decomposition of p A ( x ) ,  with each Ai odd, by using 

(3 .4)  

the proof of which involves use of the anti-commutation relations of the neutral free fermions 
(3 .1) .  Once again, the partitions in the above expression are non-standard and are changed 
to standard ones by noting that the interchange of any two consecutive partition labels 
introduces a minus sign in front of the Q-function. As in the S-function case, there is a 
combinatorial version of (3.4) the details of which we refer the reader to [29 ,30] .  

fiumple. Using the elementary Q-functions 
g I = 2 P l  4 2 = 2 p ,  2 4 3 = $ P : + g P 3  4 r = g P l + $ P 3 P I  2 4  

45 = $d + $ P 3 d  + jP5 46 = $ P f  + t P 3 P :  -k + $P5PI 

we have 

~3Qn. i )  = i ( P 3 p :  - p:) = Qu.i) - Qc4.z) + ~ Q ( s . z . I ) .  

4. S-function plcthysms 

In this section we will examine (outer) plethysms of the type s i  8 p ,  = SA($, x i ,  . . .), and 
use these results to show how one could calculate some more general types of plethysms. 
Many explicit results concerning plethysms are known [31,32] ,  along with lots of powerful 
theorems which aid in their evaluation [23 ,24] .  We shall, as a contrast. use the boson- 
fermion correspondence as a tool for the decomposition of sk (xr )  in terms of S-functions 
with argument x ,  which will enable us to calculate other plethysms direct from the definition. 

Let us examine the case r = 2 in detail. We know that 

so that 
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Using 
k 

hkh2n-k = c S < % - j , j )  
j=O 

and rearranging the sum, we obtain the result 1331 
n 

h"(X2) = r ( - l ) f s w , j ) ( x )  
j=O 

597 

along with the conjugate relation 

To calculate s l (x2)  for general A, we proceed as follows. Let 

where E,' s C,,,,. Note that the vertex operators (4.3) are just the operators (2.6) with 
x -+ x z  and z + z z .  Thus if we write q(z)  = QnzL, W ( z )  = CnaZ lY:z-%, then 

y ~ ~ ,  . . . qzj,qi, . . . qi, 10) (- l)ji+..k+l('-l)/2 

where A is given by (2.9). Now, let &z) = +(z)+(-z), p ( z )  = @*(z)@*(-z). That is 

,29(-l)aozbotl 

a 
p ( z )  = 2 exp (- in) exp (2ra z-") (-1)u0'0-1z-b0-1e-2i9. 

n 

Then W(z) = &z)f(z) where 

We can expand F(z) as a power series F(z) = Enee & zZn-', where 

(4.4) 

If we now use the fact that h,(x2) = W n l O ) ,  we have (ignoring the factors of 27ri in this 
and subsequent integrals) 

h.(x*) = 1 yz dz -% q(z)10) = 41 $z-"+lF(z)e-'qlo) 
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Upon using the fact that @i@j$'91O) = q j + - ~ , j - k ) ( x ) ,  we recover (4.2). In a similar 
manner we can consider .Y+I,,&~) = YnYmlO), and get 

- 
where we have used the property t ( z ) @ ( w )  = -w2(1 - wz/z2) - '$ (w) t (z ) .  Hence 

As for the results of section 2, the partitions that occur on the right-hand side of (4.5) may 
be non-standard, and hence must be modified using the standard rules. For the general case 
we have 

2 
S(n , -p+ l .n2-p+2  ,.... "p4-l,",")(x ) 

= Yn,%,..~Y"v,,lo) 

One can now use (4.4) to rewrite (4.6) in terms of S-functions of the argument x .  For 
partitions of length greater than two, the results are not aesthetically appealing so we do 
not bother to write them down explicitly. 

There is, however, a neat formula for one-hook S-functions w g  argument xz. Recall 
that Yzjlk;.(0) = ( - l ) ~ q i ~ j - ~ ) ( x Z ) ,  Again, we can write W*(z) = Q*(z)<*(z) where 
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4.1. The general case 

The extension to calculating SA(X')  proceeds as follows: Let w be a primitive rth root of 
unity. That is w' = 1 and 1; k-0, ( m c d r )  

1 +@k + .  . . +w"-I)'L = 
otherwise. 

Let 

E"- 
n n=O(modr) 

and 

Then if Y(z) = En& W"z'", we have 

Yi, ... Yi.10) ct S A ( X r )  

where h = (il - s + 1. iz - s + 2, . . .,is). Again, let 

T(z) = *(z)*(wz) ." f(w'-'z) 

Then Y(z) = &z)e(z) where 

If we expand 

then 

(4.7) 
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where &I denotes the symmetric group on the elements (2,3, . . . , r j .  From here on, we 
can simply follow the r = 2 case. For example we have 

Using 

we are able to express h.(x') in terms of S-functions with argument x .  Because the above 
construction mirrors the r = 2 case, one can similarly write. down an expression for s ~ ( x ' ) ,  
for general A. 

Example. In the case r = 3, with o3 = 1, using (4.7) and (4.8) we have 

@. I, . . @i, e"qI0) = s ( i , - ( , - l ) -~ . i~- ( , - z ) -k , . , . . i , -~) (x)  

so that, for example 

h 3 ( x 3 )  s(9)@) -s(Sl)(x) +sOll)(x) + s ( 6 3 ) ( x )  -f(621)(x) -S(54)(X) +s(5ZZ)(X) 

+s(441)(x) - s ( 4 3 2 ) ( X )  S(333)(X)  

which may be checked explicitly by noting that, in terms of power sums, both sides are 
equal to (p: + 3 p 6 p 3  + 2p9)/6. It is interesting to note that not all of the terms on the right- 
hand side of (4.9) are non-trivial (e.g. the ones corresponding to ( i l ,  iz, i s )  = (-2, 1,7) or 
(-1,2,5)). 

Using the above results we are in a position to calculate some plethysms by brute force 
(from the definition). Recall that, to calculate sI @s&, one expresses sp(x)  as a multinomial 
in the power sums p l ( x ) ,  pz(x), . . . and then make the substitution pj(x) -+ sA(xj). Thus, 
for example, to calculate h. 8 hz, write hz = f (pz + p:), so that 

Upon using (4.1) and (4.2). we recover the well known results 
h, @ hz = A (h&) + h:(x)) . 

(4.10) 

Conversely if one knew that (4.10) were true, one could use the right-distributive law for 
plethysm, to calculate qn) @ pz  = qn) 8 ($0) - s(p)), which was the method used in [33] 
to prove (4.2). 

One could go on to calculate qn) 8 so) from the definition 

s(n) @ S(3) = f h A x 3 )  t ;h"(xz)hdx)  t i (h.(x))3 
by using (4.1). (4.2) and (4.9) along with 

n min (n-p.2n-Zj) 

s e - j , j ) ( x )  hn = C s ( k - j + p . j + ~ . . - p - ~ ) ( x ) .  
p=O q=max (0,"-j-p) 

In a similar manner, one can obtain explicit expressions for the plethysms s(") 8 ~ ( 2 1 )  and 
qn) @ S ( I ~  using S(ZI) = (p: - pd/3 and y~ i )  = p : / 6  - pzpiI2 + pd3. 
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5. Hall-Littlewood functions 

Finally, there is the boson-fermion correspondence between HaKLittlewood symmetric 
functions, and the generalized fermions of Jing [21]. Instead of the vertex operators used 
there, we use a slightly shifted version which reduce to the usual ones when t = 0, 

the components of which, obey the anti-commutation relations 

{pn? V m )  = W n + l q m - l  + t ~ m t ~ ~ n - ~  

{d7 4 1  = tv"-l%+l + t%-l%+l 

{% d l  = t C o , - l V L  + tv;+1v0+1 + (1 - t )  8o.m. 

VA,VA~...PA~.~~A~IO) - Q i ( x ; t )  

* I  I *  

2 

If the bra and ket vacua are defined as in (22). then we have the equivalence [21] 

where A = (AI - p + 1, hz - p + 2 , .  . . , Ap). It is not altogether obvious to what function 
the state pFj, . . qfj,pi, . . piI IO) is mapped. For the simplest state pTjpj [ 0), we have 

i 

p?jpilo) fi,j(x; t )  = Q(o/x; t)qi(x; t) f (1 - t )  c q j + k ( o / x ;  t)qi-k(x; t )  
k=l 

where the supersymmetric functions q,(x/y; t) have the generating function (see [34]) 

In pariicular we have q, (O/x;  t) = ( - l ) n S ( ~ a ) ( x ;  t ) ,  where & ( x ;  t) = det(qi,-i+j(x; t ) ) .  
The function h , j ( x ;  t )  reduces down to the one-hook S-function sci, j - l , (x)  in the limit 
t + 0, but does not represent a one-hook Hal-Littlewood function, which can be expressed 
as [35] 

where e,(x) is the nth elementary symmetric function. In fact, since q, (O/x;  -1) = 
( - l )"q , (x;  -1). then &(x; -1) = Q<i,j)(x), a two-part Q-function. From the relation 

we see that 

h,j(x; t )  = ( t  + 1 ) q i ( x ;  t)qj(O/x; t )  - f j . i ( o / x ;  t )  

so that when t = - 1 ,  we get Q ( i . j ) ( x )  = -Qu,i)(x) as per usual. Because we do not 
know how to express pTj,  . . .gC,,(oi, ...p,,IO) in terms of Hall-Littlewood functions, it 
appears that we are unable to calculate the product of a Hall-Littlewood function and 
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a power sum. One way to get around this is to express the Hall-Littlewood function 
P*(x;  t) = b;'(t)Q*(x; t )  , where 

b l ( t ) = n y , , ( ~ ) ( t )  f i ( t ) = u - r x l  - r z ) ~ - ~ ( i  -ii) 
i 

and mi@) is the number of times i occurs in the partition A, in terms of S-functions 

using the inverse Kostka-Foulkes matrix K$(t),  use lemma 1, and then reexpress the the 
result in terms of the A ( x ;  t) using KhLr(t) .  As previously mentioned, there are quite a 
number of explicit results conceming Kostka-Foulkes matrices, and it is our intention to 
now describe a way of calculating their inverses via (5.1). 

It turns out that we can use the techniques of section 4, where we decompose a vertex 
operator in terms of products of free fermionic currents and an annihilation p a ,  to find 
a simple way of calculating the inverse Kostka-Foulkes matrix elements K;d(t). Write 
v(z) = t%z) E ( z )  where az) = @ . ( z ) V ( t z )  and 

and we recover equation (2.14). Similarly, we can use the fact that 
t Z  - w 

z - w  
B ( Z ) ? W  = - F(w)E(z)  

we have 
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Thus we are able to express two-part Hall-Littlewood functions in terms of one and two- 
hook S-functions. Again there is overcounting in the above equation, but this might be 
expected due to the complicated nature of inverse Kostka-Foulkes matrices. 

Example. Using n = 4 and m = 1 in (5.3) we have 

P(31,(x; t) = - Qnl)(x: t )  

while for n = 3, m = 2, we get 

1 
s(3I)(X) - ts(P)(x) - t S ( z l z ) ( X )  + (tZ + t3)S(14)(x) (1 - t ) 2  

For the general case we have 

and so application of (5.2) will allow one to express PA@; t )  where h is a p part partition 
in terms of one, two, up to p-hook S-functions. 

6. Conclusions 

We have used the (generalized) boson-fermion correspondence as a means of generating 
interesting identities amongst power sums, S-, Q- and Hall-Littlewood symmetric functions. 
We developed methods for decomposing SA(X ' )  which enabled us to examine some S- 
function plethysms directly from the definition. Finally we we able to apply similar methods 
for expanding Hall-Littlewood functions in terms of ordinary S-functions. It would seem 
that the methods used here could be applied to any symmetric function which is expressable 
in terms of the product of modes of a vertex operator, for example Milne's symmetric 
functions HA@; q)  [36,37]. Indeed, if a vertex operator realization of Macdonald's [38] 
generalized symmetric functions Pi (x ;  q,  t )  were available (of which the author remains 
unaware), these methods could be of help in studying the propehes of these important 
functions. 

One possible avenue for further investigation is to consider extending the definition of 
outer plethysm to Hall-Littlewood functions. For example, using 

we can mirror the derivation of h,(x2) to show that 
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Thus if we define the plethysm Q A  8 Q ,  to mean: express Q, as a multinomial in power 
sums and then make the substitution p j ( x )  + Q ~ ( x j ;  2'). then we have the results 

+".+ b(f)Q(n+l,n-i)  t t ( t  - if n is odd. 

where a(t) = (1 -? ) ( I  + t2 )  and b(t) = 2t(t - 1). There is no a priori reason why one 
should use t j  in the above definition of Hall-Littlewood plethysm, however it seems that 
the results are much nicer if this is the case. In particular, in the two examples above, the 
coefficients in the plethysm are elements of Z[t ] .  It would be interesting to find out if this 
were m e  in general. 
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Appendix. Determinant formulae for hn(z2) 

There is an interesting relation between h.(xz),  the elementary Q-functions q.(x) and the 
functions h,(x")) h,(x, x ) .  Here, 

denotes a replicated S-function [34] and 

x - c ( x )  ( ) =g h ( x )  
is the generalized binomial coefficient associated to a partition 1. In particular, for 01 = 2, 
we have 

h.(x'2)) = @ + I)%7t+p.m,(x). 
2mtp=n 

Now 

Hence 
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Alternatively we can write this as 
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